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Abstract 

Let M = MO x [w be a stationary Lorentz metric and PO. PI be two closed submanifolds of MO. 
By using the Ljustemik-Schnirelman theory and variational tools, we prove the influence of the 
topology of PO and Pt on the number of lightlike geodesics in M joining PO x (0) to Pt x R. 
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1. Definitions and statement of main results 

Let M be a smooth finite dimensional manifold and (., .)? be a Lorentz metric on it, 
that is a smooth symmetric (0,2) tensor field on M which defines a non-degenerate bilinear 
form of index 1 on each tangent space T,M, z E M. 

Let us recall that the geodesics in M are smooth curves z : [a, b] -+ M such that 

&i(s) = 0 for all s E [a, bl, 

where D, denotes the covariant derivative along z induced by the Levi-Civita connection 

of (., .)Z. 
It is easy to prove that for each geodesic z = z(s) the energy 

E(z) = (i(s), i(s))z 

??Supported by MURST (research funds 40% and 60%) and EEC, Program Human Capital Mobility (con- 
tract ERBCHRXCT 940494). 

* Corresponding author. E-mail candela@pascal.dm.uniba.it. 

0393-0440/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved. 
PII SO393-0440(96)00034-4 



282 A.M. Candela, A. Salvatore/Journal of Geometry and Physics 22 (1997) 281-297 

is constant in [a, b], so a geodesic z = z(s) is timelike, lightlike or spacelike if E(z) is 
negative, null or positive, respectively. 

A Lorentz manifold (M, (s, .)z) is called stationary if there exists a finite-dimensional 
Riemannian manifold (MO, (., .),) such that M = MO x R and (., .)I is given by 

((7 T)Z = (,$,6)x + 2 (S(x), 6)xr - BW2, (1.1) 

foranyz = (x,t) E MO x Rand< = (6,~) E T,M = TxMo x R,with@:Mu + Iw 
smooth and positive scalar field, S: MO + TM0 smooth vector field. In particular, if 
6(x) E 0, (1.1) defines a static metric and (M, (., .)z) is called static Lorentzian manifold. 

From now on, let M = MO x IF! be a stationary Lorentz manifold equipped with the 
Lorentz metric (1.1). Let PO and Pt be two given submanifolds of MO and let to E R be 
fixed. 

The aim of this paper is to study the existence of lightlike geodesics z : [0, l] + M, 
z = (x, r), joining PO = PO x {to) and pi = Pi x R, that is such that z(0) E &J and 
z( 1) E Pt, and whose space component x satisfies the orthogonal conditions. 

1 

(f(O), Ox = 0 for all t E T,(o)f’o, 

(i(l),e), =0 forallt E T,(l)Pl. (1.2) 

More exactly we want to find smooth functions z : [0, l] + M, z(s) = (x(s), t(s)), 
solutions of the following system: 

L&i(s) = 0 for all s E [0, 11, 

E(z) = (i(s), i(s)), = 0 for all s E [0, 11, 

’ x(O) E PO, r(O) = 10, x(l) E PI, 
(k(O), ox = 0 for all 6 E L(o)f’o, 

\ (f(l), 0, = 0 for all 6 E T,(I) PI. 

(1.3) 

From a physical point of view, a Lorentz metric describes a gravitational field and lightlike 
geodesics verifying (1.3) represent trajectories of light rays joining two celestial bodies of 
which one is a light source. In General Relativity a remarkable example of stationary Lorentz 
manifold is the Kerr space-time which describes the space-time outside an axially symmet- 
ric body rotating around its axis while an example of static manifold is the Schwarzschild 
space-time which represents the manifold outside a static spherically symmetric massive 
body (cf. [6,9]). 

Lightlike geodesics joining an event Fe = {(x0, to)] to a vertical line Pi = (xi} x Iw 
have been studied in [5], while in [12] the existence of geodesics, not necessarily lightlike, 
from a point to a subspace Pt = Pt x {tt ) in a static Lorentzian manifold has been proved. 
Here we prove that, in a stationary manifold M, the number of light rays joining PO = 
PO x {to] and Pi = PI x R depends on the topological properties of MO, PO and PI (for 
the Riemannian case, see [8,13]). To this aim in Section 3 we find out a lower bound to the 
Ljustemik-Schnirelman category of the space of paths joining PO to PI in MO by means 
of the category of PO x PI. 

In the following, the Ljustemik-Schnirelman category of the topological space X in itself 
will be denoted by cat(X) (see Definition 3.1). 
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Theorem 1.1. Let M = MO x Iw be a manifold equipped with the stationary Lorentz 
metric (1.1) such that 
(Mu) (MO, (., .),) is a connected, complete, C3 n-dimensional Riemannian manifold; 
(Ml) there exist some constants v, N. D > 0 such that 

v 5 p(x) ( N and (6(n), 6(x)), 5 D for all x E MO. (1.4) 

Let PO and PI be two disjoint closed submanifolds of MO such that 
(C) PO or PI is compact; 
(00) (S(x),t), = Oforanyx E PO, 6 E LPo; 

(01) V(X), Ox = Oforanyx E PI, 4 E GPI. 

Then there exists at least one solution of (1.3). If moreover, PO and PI are both contractible 
in MO, then problem (1.3) has at least cat(Pu x PI) solutions. 

The following multiplicity theorem holds even if, eventually, PO and P1 are not disjoint: 

Theorem 1.2. Let M = MO x Iw be a manifold equipped with the Lorentz metric (1.1) 
such that hypotheses (Mu) and (Ml ) are satisfied. Let PO and P1 be two closed submanifolds 
of MO such that (C), (00) and (01) hold. Zf MO is not contractible in itself while PO and 
P1 are both contractible in MO. then problem (1.3) has infinitely many non-constant solu- 
tions Z,,(S) = (x,(s), tn (s)) whose “arrival times” (t, (l)),,~ form a diverging increasing 
sequence. 

Remark 1.3. Let (M, (., .):) be a conformal stationary Lorentz manifold, that is there 
exists a finite-dimensional Riemannian manifold (MO, (., .)X) such that M = MO x 1w is 
equipped with the Lorentz metric 

foranyz=(x,t)EMuxlRandforany<=(~,t)ET,M ~T~MgxIW,wherea:M + 
Iw and j? MO + [w are smooth and positive scalar fields and 6: MO + TM0 is a smooth 
vector field. Observe that /3 may not satisfy (1:4). Let PO, P1 be two submanifolds of M 0 
and let to E R be fixed. Since lightlike geodesics are independent, up to reparametrization, 
on a conformal change of the metric, the same results of Theorems 1.1 and 1.2 still hold 
for such a kind of Lorentz manifolds provided that in the hypotheses of such theorems we 
replace the Riemannian metric (., .)X on TX MO with the new one 

for each x E MO. 

Remark 1.4. Clearly, Theorems 1.1 and 1.2 can be proved if 6(x) = 0, that is if M is a 
static Lorentz manifold. In this case, however, the proof can be given by a different and 
easier variational approach (see Section 5). 

If PO is reduced to a single point xu E MO the existence and multiplicity results in [ 121 
can be improved as follows. 
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Corollary 1.5. Let (M, (., .)z) be a stutionaly Lorentzmanifold satisfying (Mu) and (Ml). 
Let 20 = (x0, to) E M be&ed and PI be a closed submanifold of MO such that (01) holds. 
Zfxo 4 PI, there exists at least one lightlike geodesic starting from zo and ending in PI x R; 
moreover if PI is contractible in MO such geodesics are at least cat(P1). At lust, either if 
x0 E P1 or if x0 4 PI, if P1 is contractible in MO while MO is not contractible in itseK 
there exist infinitely many lightlike non-constant geodesics z,,(s) = (x, (s), t,,(s)) from zo 
to PI x R whose “arrival times” (t,, (l)),,,+~ form a diverging increasing sequence. 

Remark 1.6. By using the arguments in [2,13] it is possible to extend Theorems 1.1 and 1.2 
to the case in which the Lorentzian manifold has a light convex boundary or the submanifolds 
PO and P1 are both non-compact. In particular, this generalization allows to prove the 
existence of light rays of type (1.3) in some non-complete space-times relevant from a 
physical point of view, for example the Kerr and the Schwarzschild ones. 

2. Variational approach 

Let M = MO x R be a manifold equipped with the stationary Lorentz metric (1.1) 
such that hypotheses (Mu) and (Ml) hold. Let to E Iw be fixed and PO, PI be two given 
submanifolds of MO. Assume to = 0 and let PO = PO x [O}, & = PI x R. 

As lightlike geodesics are independent, up to reparametrization, on a conformal change 
of the metric and ~9 is bounded and far from zero, then, without loss of generality, we can 
assume that it is jI(x) G 1; moreover by the Nash Embedding theorem it follows that MO 
is a submanifold of an Euclidean space RN and its metric (., .)X is the Euclidean metric 
of USN which will be denoted by (., .), thus we can suppose that M is equipped with the 
Lorentz metric 

(C, t)z = (696) + 2 V(x), 6) r - r* (2.1) 

for any z = (x, t) E MO x R! and 5‘ = (4, t) E T,M = TxMo x R. 
Let I = [O, 11 and H1 (I, RN) be the Sobolev space of the absolutely continuous curves 

whose derivative is square summable. It is well known that H1 (I, RN) is a Hilbert space 
endowed by the norm 

,,x,,*=j(i.i)ds +j(x,x)ds. 

0 0 

Let us define the subset 

r(Po, PI) = {x E H’(Z, I@):x(Z) c MO ; x(O) E PO, x(1) E PI]. 

It is possible to prove (see, e.g., [lo]) that if MO is complete and PO, P1 are closed then 
T(Po, PI) is a complete Riemannian manifold whose tangent space in x E ~(Po, PI) is 

T,r(Po, PI) = (4 E H’(Z, TMo): f(s) E Txcs)Mg foralls E Z ; 
4(O) E G(o)Po, t(1) E T,(I)~‘I}. 
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If (00) and (0)) hold, then solutions of (1.3) can be found as critical points at level zero 
of the functional 

f(z) = ; /(i, i), ds 
0 

in f ( PO, Pt ) x H ’ (I, 03). Unluckly if f is not bounded from above nor from below then, 
as in [5], it is better to define a new functional bounded from below by introducing a new 
parameter, the “arrival time” h E R, and a variational argument similar to the Fermat 
principle. 

Fixed A. E IR, let us introduce 

WA = {t E H’(Z, R):t(O) = 0, t(1) = A), 

closed affine submanifold of H’ (I, R) whose tangent space in each point is given by 

H; = (5. E H’(Z, R): t(O) = r(1) = 0), 

and let us define Z,J = ~(Po, PI) x Wk Hilbert manifold such that T,ZA = T,f ( PO, PI) x 
Hd for each z = (x, t) E ZA. 

Let us consider the “energy” functional restricted to ZA 

fA(Z)=; /it,&ds=; /((i,i)+ZB(r).i)~-i2)dr. Z = (x, t) E ZJ.. 

0 0 

Remark 2.1. It is easy to prove that fA is a C’ functional on ZJ.; moreover if z = (x, t) E 
ZA and { = (4, t) E T, ZA, by r E Hd and integrating by parts there results 

1 I 

f;(z)Kl = 
s 

(iv i-L ds = (i(l), W))z - W-3, t(o)), - 
s 

(&it T)z ds 
0 0 

1 

= 
II 

- L&i + i 6’(x)*[R] - -$6(x)), if ds + [(a, .$,I:, 
) 

0 
1 

+ [i (S(x), Ol:, + 
SC 

. . f - $ (@(x),i)) 
> 

T ds, 

0 

where #(X(S))* is the adjoint of S’(x(s)) for any s E I. Clearly, 

+ [(.i-, c)lh + ii (8(x). 01; (2.2) 
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for all c E T,r(Po, PI), while 

1 

~(z)lrl = f;(zm r)l = SC t’- $ ((S(x),.?)) tds 

0 

(2.3) 

for all t E Z#. 

Theorem 2.2. Let z: s E I w z(s) = (x(s), t(s)) E M. Z’ PO and PI satisfy the 
orthogonal hypotheses (Oh) and (Ol), then the following propositions are equivalent: 
(a) z is a solution of (1.3) with “arrival time” t (1) = ;I; 
(b) z is a critical point of fA on Zk such that fl (z) = 0. 

Proof: Remark that conditions (00) and (01) imply 

(6(x(O)), W)) = W(l)), 6(l)) = 0 for all 6 E T,r(Po, Pt). (2.4) 

If (a) holds, then (b) follows easily by Remark 2.1, (2.4) and the orthogonal conditions 
(1.2). 

Let z be such that f;(z) = 0. By (2.3) it follows 

f - $ ((S(x),i)) = 0; 

moreover by (2.2) for any 4 E TX r( PO, PI) with compact support it is 

(2.5) 

1 

J( - D,f + i S’(x)*[R] - $(&j(x)), c 

0 

By using classical theorems it can be proved that 

-D,i + i 6’(x)*[i] - $(iS(x)) = 0, 

then (2.4) implies that z is a geodesic and the orthogonal conditions (1.2) hold, while 
fA (z) = 0 implies that z is lightlike. 0 

From now on, let PO and P1 satisfy the orthogonal hypotheses (00) and (01). 
Let us consider the kernel of the map 3fJat: 

ZE ZA:z(g)=O 

Proposition 2.3. Let z = (x, t) E Z,J be given. Then the following propositions are 
equivalent: 
(a) z is a critical point of fk; 
(b) z E NA and 

g(z)[d] = 0 forull 6 E T,r(Po, PI). 
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Pro05 Follows easily by Remark 2.1. 0 

Remark 2.4. Let z = (n, t) E ZA. By (2.5) it follows that z E Nk if and only if 

t(s) = ‘(S(x(r)), k(r)) dr + s 
0 

s (k-[@(x),i)dr) foralls E I. 

Let us define 

@1:x E r(Po, PI> W @A(X) E w, 

such that 

S 

@A(X)(S) = 
s 

(6(x(r)), i(r)) dr + s A. - ( / . )forallsE,. (S(x), x) dr 

0 

By Remark 2.4 it is easy to prove that @A is a C’ function whose graph is just NA, that is 

z = (x, t) E NA M r = @A(X). (2.6) 

By (2.6) it follows that the restriction of f~ on NA. is the functional 

JA:X E ~(Po, PI) I--+ Ji(x) = f~(x, @k(x)) E R, 

hence foreachx E ~(Po, PI): 

1 

JA(x) = ; 
s 

((i, i) + (S(x), m)2)ds - 

0 

Let us remark that 

J;(x)[U = 2(X, @A(X))[~I + !$x, @A(x)) [@$(x%1] 3 

foranyx E ~(Po. Pl),.fj c Gr(P0, PI). 
Arguing as in [7], Proposition 2.3, (2.6) and (2.8) imply the following result: 

Proposition 2.5. Taken z = (x, t) E Zl, the following propositions are equivalent: 
(a) z is a critical point of fk; 
(b) x is a critical point of JA and t = @A(X). 
Moreover, if(a) or(b) holds, it is fk(x, t) = JA(x). 

(2.7) 

(2.8) 

If ;I E R is fixed, by Theorem 2.2 and Proposition 2.5 it follows that, for obtaining 
solutions of problem (1.3) such that t (1) = )L, it is enough to find critical points of JA such 
that JA(x) = 0. Unluckly here h is unknown and, as it gives the “instant” in which the 
lightlike geodesic z “arrives” to the given manifold PI, we can suppose that the parameter 
1 has to be strictly positive. 
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Let us introduce the map 

H: (h, x) E Iw+ x r(P0, PI) w 2JA(X) E Iw. 

Remark 2.6. By properties of Ji and by last remarks it follows that H is a C’ functional 
and solving (1.3) is equivalent to find (I., x) E lR+ x f (PO, PI) solution of the following 
problem: 

S&x) = 0, H(h,x) = 0, A. > 0. (2.9) 

Remark 2.7. By (2.7) it is easy to prove that if (A, x) is such that H(k, x) = 0, then 

~(~,,)=_,(,-i,,(x),i~d~) =0 _ xisconstant. 

Let F: ~(Po, PI) + R be defined as follows: 

1 1 

F(x) = 
s 
(S(x),A) ds + 

s 
((i, k) + (6(x), k12) ds. 

0 0 

Remark 2.8. As Hijlder older inequality implies 

(2.10) 

2 1 

i s V(x), ij2 ds, 
0 

by (1.4) and (2.10) arguing as in [2, Lemma 
co > 0 such that 

(2.11) 

3.21, it is possibie to prove that there exists 

1 
for all x E f (PO, PI). (2.12) 

Whence F(n) 2 0 for each x E r(Po, PI) while F(x) = 0 if and only if x is a constant 
function. 

By simple calculations it is possible to prove that F is a map continuous but not differ- 
entiable at level zero and it is smooth elsewhere. 

Remark 2.9. By Remarks 2.7, 2.8 and (2.10) it can be proved (see, e.g. [2] or [5]) that 
(i, X) solves (2.9) with X non-constant if and only if X is such that 

F'(i) = 0, i; = F(i) > 0. 
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Remark 2.10. If the given closed submanifolds PO and P1 are disjoint, then there are no 
constants in ~(Po, PI); hence F is a C’ strictly positive functional in r(Po, PI) and by 
Remark 2.9 it follows that for solving (2.9) it is enough to find critical points of F. 

Finally, by Remarks 2.6 and 2.9 it follows: 

Theorem 2.11. Let PO and P1 be two given submanifolds of MO which satisfy the orthog- 
onal conditions (00) and (01). Zf X E T’(Po, PI) is such that 

F’(i) = 0, F(x) > 0, 

then, assuming i = F(X), 2 = (X, 0, (X)) is a solution of problem (1.3). 

3. Topological tools 

In the last paragraph it has been proved that solving the given problem is equivalent to 
find positive critical levels of the functional F defined in (2.10). To this aim we will use the 
well known Ljusternik-Schnirelman Theory (see, e.g. [ 11,14,15]). 

Definition 3.1. Let X be a topological space. Given A g X, catx (A) is the category of A 
in X, that is the least number of closed and contractible subsets of X covering A. If it is not 
possible to cover A with a finite number of such sets, it is catx (A) = +w. 

We denote cat(X) = catx(X). 

Definition 3.2. Let r be a Riemannian manifold. A C’ functional g: r + IR satisfies 
the Palais-Smale condition at level a E Iw, briefly (PS),, if any (x~)~~N c r such that 
g(xn) + a and g’(x,J -+ 0 for n + +CXJ has a subsequence which converges in r. 

Let us recall the classical Ljustemik-Schnirelman multiplicity theorem. 

Theorem 3.3. Let r be a complete Riemannian manifold and g a C’ functional on r 
which satisfies the (PS), condition at any level a E [w. Taking any k E N, k > 0, let us 
define 

rk = (A c r:catj-(A) 2 k], ck = j$ “il g(x). (3.1) 
x 

Then ck is a critical value of g for each k such that rk # 0 and ck E 6!; if moreover, g is 
bounded from below then g attains its injmum and has at least cat(r) critical levels. 

Remark 3.4. Let r and g be as in Theorem 3.3. If g is bounded from below then for all 
c E IR it is 

catf (g’) < +oc, 

where gc = {x E r: g(x) ( c) is the sublevel of g corresponding to the level c. 
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Remark 3.5. If g is a positive functional not differentiable at level zero while it is smooth 
elsewhere in a complete Riemannian manifold and the (PS), condition holds at any level 
a > 0, then it can be proved that the same result of Theorem 3.3 holds for ck > 0. 

As Theorem 3.3 joins critical levels of a functional g to the topology of r, let us give some 
theorems useful to know more about the topological properties of the manifold r( PO, PI) 
introduced in the previous section. 

Theorem 3.6. Let (MO, (., .)) be a smooth complete connected jinite-dimensional 
Riemannian manifold and PO and P) be closed submanifolds. If MO is not contractible 
in itself while both PO and P1 are contractible in MO, then r( PO, PI) has injinite category 
and possesses compact subsets of arbitrary high category. 

Proof. For the proof, see [3,4]. 

Theorem 3.7. Let (MO, (., +)) be a smooth complete connected jinite-dimensional 
Riemannian manifold and PO and PI be closed submanifolds both contractible in MO. 
Then 

cat(r(Po, PI)) 3 cat(Pu x PI). 

Proofi If P(Po, PI) denotes the space of paths in MO which start from PO and end in PI, 
by cat(P(Pu, PI)) = cat(r(Pu, PI)) (e.g., see [4]) it is enough to prove that 

cat(P(P0, PI)) 2 cat(Pu x PI). (3.2) 

Let m = cat(P(Pu, PI)) and Al, AZ, . . . , A, be closed and contractible sets in P( PO, PI) 
such that P(P0, PI) = A1 U A2 U . . . U A,,,. 

ForanyjE(1,2 ,..., m),define 

Bj = ((90, ql) E PO x Pi : there exists x E Aj such that x(O) = qo, x(1) = ql]. 

By Definition 3.1 it follows that (3.2) holds if 

PO X PI = fi Bj (3.3) 
j=l 

and Bj is closed and contractible in PO x PI for each j E (1,2, . . . , m). 
Remark that as PO and PI are contractible in MO, then there exist 40, cft E MO and two 

continuous maps ZZu : I x PO + MO, H1 : Z x P1 + MO such that 

Ho(O, 40) = 409 HO(l? 40) = 40 for all qo E PO, 

Hlaql) = 91, f&u, Sl) = Sl for all q1 E PI ; 

moreover MO connected implies that there exists a path (Y: Z + MO such that 

a(O) = 409 o(l) = 41. 

(3.4) 

(3.5) 

(3.6) 
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Let (40, 41) E PO x PI be fixed and assume wqO,*,: I -+ MO as follows: 

291 

Ho(3s, qo) ifs E [0, f], 

w90.9, (s) = a(3s - 1) ifs E [i, 51, 

HI (3 - 3s, ql) ifs E ]i, I]. 

By (3.4) (3.5) and (3.6) it follows that 

(3.7) 

w90,9, E RPO, Pl), @90,9, (0) = 90, w90.9, (1) = 913 (3.8) 

thus there exists j E (I, 2, . . . , m) such that oqo,4, E Aj, hence (qo,ql) E Bj and (3.3) 
holds. 

Now, let j E (1,2, . . . . n] be fixed. We claim that Bj is closed and contractible in 
PO x P]. 

In fact, let (qon, qln) E Bj be a given sequence such that (qo,, ql,,) -+ (qo,ql) in 
MO x MO if n --, +oo. By PO and PI closed, it is (90.41) E PO x PI and, defined m90n,4,n 
and %a.41 as in (3.7), it is easy to prove that w~~,.~,,, -+ wqoqq, uniformly in P( PO, PI). As 
w~~,,,~,” E Aj and Aj is closed, then w~~,~, E Aj whence by (3.8) it follows (40, ql) E Bj. 

AS Aj is contractible in P(E’o, PI), there exist Xj E P(Pc, Pt) and a continuous map 
‘Ifj : I x Aj + P(Po, PI) such that 

‘Hj(0, X) = X, “rcj(l,X) = Xj for all x E Aj. (3.9) 

For s E I and (40, 41) E Bj, assume 

fij(S3 (903 41)) = (3_Ii(S, Wqo,q,)(O),Xj(S, wqo,q,)(l)) 

with w90,41 defined in (3.7). It is easy to prove that fij : I x Bj -+ PO x P1 is continuous, 
moreover (3.8) and (3.9) imply that 

Gj(O3 (903 41))= Wj(O, Wqg,q,)(O), Xj(Ot w90,9,)(1)) 

= (wqo,q, (O), wqo,q, (1)) = (40, Sl), 

while 

tijC1, (407 41)) = (Wj(l, wq0,q,)(O), Xj(l, Wqo,q,)(l)) = (ij(O), ij(l)), 

for all (40, qt) E Bj. Hence Bj is contractible to (Xj (0), Xj (1)) in PO x Pi. 0 

Remark 3.8. Theorem 3.7 generalizes a similar result proved in [ 121 when PO = (x0). 

4. Proof of main theorems 

From now on, let M = MO x R be a manifold equipped with the Lorentz metric (2. I) 
such that hypotheses (Mu) and (Ml) are satisfied. Moreover, let PO and Pt be two given 
closed submanifolds of MO such that (C), (00) and (01) hold. 
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In order to find positive critical levels of the functional F introduced in (2. lo), we need 
the following lemma. 

Lemma 4.1. The functional F satisfies the (PS), condition at any strictly positive level a. 

ProojI Let a > 0 and (x,&.N c ~(Po, PI) be a (PS), sequence for F, i.e. 

,i;lmm F(G) = a, 

liym F’(x,) = 0. 

By (2.12) and (4.1) it follows that 

(4.1) 

(4.2) 

is bounded. (4.3) 

By the hypothesis (C) and (4.3) it is easy to prove that there exists x0 E Mu such that 

sup{d(x,(s), x0): s E I, n E N} < +oo, (4.4) 

(where d(., .) is the distance in MO) and (x&~N is bounded in H’(Z, RN), so there exists 
x such that x, - x weakly in H’ (I, RN) and uniformly in I, up to subsequences. 

As MO is complete and PO, PI are closed, then x E F( PO, PI); moreover it is possible 
to prove (cf. [l, Lemma 2.11) that there exist two bounded sequences (&)nE~ and (u~)~~N 
in H’(Z, RN) such that 

.%I-x=&l+vv,, J$ E TX, r(Po, Pt) for any n E N, 

&, - 0 weakly in H’(Z, RN) and u,, + 0 strongly in H’(Z, IF!‘). 

By (4.2) and (4.6) it follows that 

1 

41) = F’(xn)M = 
s 

((S’(x&, in) + (6(x,), 64) ds 

0 

(4.5) 

(4.6) 

s ((fn, !izn) + MxrA &J Wn), 64 + Mxn), L) V’(xn)h h))ds 
0 

+ @lizLiz . 
By (4.4) and xn -+ x uniformly in Z it follows 6(x,) + 6(x) uniformly in I, thus by (4.6) 
it is 

1 1 1 

s 
(6(x,), &Ads = 

s 
(6(x,) -S(x), bzn) ds + 

s 
(S(x), kz, ds = o(l). (4.7) 

0 0 0 
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By simple calculations, (1.4) and (4.3) imply 

(IF) Nan is bounded, 

then by (4.3), (4.4), (4.6) and (4.7) it follows 

I 1 

s 
(in, 64 ds + 

s 
(6(x,), &)(8(x,), t, ds = 41). 

0 0 

By means of (4.5)~(4.7), Eq. (4.5) becomes 

(4.8) 

1 I 

s 
(tn, tn) ds + 

s 
(6(x,), t)* ds = o(l), 

0 0 

thus s,’ (&, &) ds = o( 1) implies & -+ 0 strongly in H’ (I, RN). ??

Remark 4.2. If Pu n Pi = 0, then by Remark 2.10 F is C’ in all ~(Po, PI) and arguing 
as in Lemma 4.1 the (PS), condition holds at any level a E R. 

If PO fl P1 is not empty, some constants are in f (Pa, Pi) and F is not differentiable at 
level zero then the result in Remark 3.4 is not obvious. Nevertheless the following lemma 
can be proved: 

Lemma 4.3. For any c E R the sublevel FC is such that 

catr(p,,p,)U? < +m (4.9) 

Pro08 If PO n PI = 0, (4.9) follows by Remark 3.4. If, on the contrary, PO fl PI # 0, we 
consider the functional 

I 

g(n) = 
J 

(k,i)ds, x E T(Po, PI). 

0 

It is well known that g is of class C’ ; moreover, simplifying the arguments in Lemma 4.1, 
it can be proved that g satisfies (PS), for all a E R. By Remark 3.4 it follows 

catr(p,,,p,)(gb) < +oc for any b E R. (4.10) 

As (2.12) implies that fixed c E R there exists b E R such that 

FC c gb, 

then (4.9) follows by (4.10). ??
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Proof of Theorem 1.1. Let PO n P1 = 0. By (2.12), Remark 4.2 and Theorem 3.3 it follows 
that 

c= inf 
x~r(po.pl) 

F(x) > 0 

is attained. If, moreover, PO and PI are contractible in Mu, then by Theorems 3.3 and 3.7 the 
functional F has at least cat( PO x PI) strictly positive critical levels. Hence Theorem 2.11 
can be applied. 0 

Proof of Theorem 1.2. Assume now that the hypotheses of Theorem 1.2 hold. 
If PO rl PI = 0, then by (2.12), Remark 4.2 and Theorems 3.3 and 3.6 it follows that F 

has infinitely many strictly positive critical levels. However for finding an estimate of the 
“arrival times” it is better to use the following tools which work even if PO f~ PI # 0. 

Let E > 0 be fixed. We claim there exists k E N such that 

BEG-” * BnF,#0, (4.11) 

where r’ is defined in (3.1) and FE = (x E f (PO, PI) : F(x) > E}. 
In fact, if (4.11) does not hold there exists a sequence (B&N of subsets of r( PO, PI) 

such that 

c%-(po,P,)(Bn) 2 n, B, c FE foralln EN, 

thus catr(po,p, )( FE) = +oo in contradiction with Lemma 4.3. 
Let k be such that (4.11) holds and consider the corresponding CL defined as in (3.1). By 

(4.11) and Theorem 3.6 it follows that 

r, # 0, &iCi <+cq 

hence by Remark 3.5 and Lemma 4.1 CL is a strictly positive critical level of F. 
As E > 0 is fixed in an arbitrary way, it is possible to consider two sequences sn 7 +oo 

and k, 7 +oo such that 

0 < &I 5 Ck, < En+1 5 Ck,+, 

and for each n E N there exists xn E ~(Po, PI) critical point of F at level Ck,, . By Theorem 
2.11 it follows that problem (1.3) has infinitely many solutions whose arrival time is h, = 
F(xn) = Ck, such that limn++oo A., = +oo. 0 

Remark 4.4. In the hypotheses of Theorem 1.2 it is easy to prove that the found sequence 
of solutions zn = (x,, f,) is such that 

1 

lim 
ll++CC s 

(li-,, k,) ds = +oo. 
0 
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In fact, by means of simple calculations, (1.4) and (2.11) imply that there exists Cg > 0 
such that 

for all x E f (PO, PI). 

5. Static case 

Let (M. (.. .)Z) be a static Lorentz manifold satisfying (MO) and such that for some 
constants N, u > 0 there results u 5 /I(x) 5 N for all x E MO. 

Arguing as in Section 2 we can suppose that M = MO x IR is equipped with the static 
Lorentzian metric 

for any i = (x, t) E MO x R and 4 = (e, t) E TZM E TxMo x R, where (., .) is the 
Euclidean Riemannian metric on MO. 

The following result holds: 

Corollary 5.1. Let (M, (.. .)z) be a static L.orentz manifold satisfying (MO) and such that 
for some constants N, v > 0 there results v 5 b(x) 5 N for all x E MO. Let PO and P1 
be two closed submanifolds of MO such that (C) holds. If PO fI PI = 0, then there exists at 
least one solution of (1.3), while if PO and P1 are both contractible in MO then the solutions 
of (1.3) are at least cat(Pu x PI). Zf either PO fl P1 = 0 or PO n PI # 0, and PO and PI 
are both contractible in MO while MO is not contractible in itselj then problem (1.3) has 
infinitely many non-constant solutions Z,,(S) = (x,(s), t,,(s)) such that the “lenght” of x,, 
and the “arrival time ” t,, (1) are diverging increasing sequences. 

Corollary 5.1 can be proved by means of Theorems 1.1 and 1.2 applied to a static Lorentz 
manifold, however we want to prove Corollary 5.1 by using a simpler variational approach. 

Theorem 5.2. Let M be a manifold endowed by the static Lorentz metric (5.1) and z = 
(x, t) be a smooth curve. The following propositions are equivalent: 
(a) z = z(s) is a geodesic in M; 
(b) x=x(s)isageodesicin(M~,(~,~))andthereexistsk~[Wsuchthatt(s)=ks+t(O) 

forall s E I. 
Moreover; z is a lightlike geodesic in M starting from PO x (0) which arrives to PI x R ij 
and only if(b) holds, x joins PO and P1 and 

t(s) = L(x)s where L(x) = m ds 
s 

is the length of x. 

0 
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Proo$ By (5.1) it is 

(&i(s), or = (%(s), 6) - 2’(s)r (5.2) 

for all s E I, [ = (e, t) E T,(,)M. Whence (a) implies that x is a geodesic in MO and 
there exist two constants E, I? E R such that 

E = (i(s), i(s)),, E = (i(s), i(s)) for all s E I. (5.3) 

By (5.1) and (5.3) it follows that there exists a real constant k such that i(s) = k for any 
s E I, hence (b) holds. 

Vice versa, if x is a geodesic in MO and t is a straight line, by (5.2) it follows that 
D,i = 0. 

Now, if z is a lightlike geodesic in M from PO x [O} to PI x 08, then x joins PO and PI, 
t(0) cOandin(5.3)itisE =O,whencei(s) = J(k(s),R(s))whichimpliest(s) = L(x)s. 
The contrary follows easily by (5.1). 0 

Proof of Corollary 5.1. By Theorem 5.2 it follows that searching solutions of (1.3) is 
equivalent to study critical points of the functional 

G(x) = ; /(i, i) ds, x E r(Po, Pl). 

0 

As G is a C’ map on ~(Po, PI) and verifies (PS), condition for any a E R, the proof 
follows by Theorems 3.3,3.6 and 3.7. 0 
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