Light rays joining two submanifolds in space-times *

A.M. Candela ${ }^{*}$, A. Salvatore
Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

Received 13 June 1996

Abstract

Let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ be a stationary Lorentz metric and P_{0}, P_{1} be two closed submanifolds of \mathcal{M}_{0}. By using the Ljusternik-Schnirelman theory and variational tools, we prove the influence of the topology of P_{0} and P_{1} on the number of lightlike geodesics in \mathcal{M} joining $P_{0} \times\{0\}$ to $P_{1} \times \mathbb{R}$.

Subj. Class.: Differential geometry; General relativity 1991 MSC: 58E05, 53C50, 83C99 Keywords: Variational methods; Ljusternik-Schnirelman category; Light rays; General relativity

1. Definitions and statement of main results

Let \mathcal{M} be a smooth finite dimensional manifold and $\langle\cdot, \cdot\rangle_{z}$ be a Lorentz metric on it, that is a smooth symmetric $(0,2)$ tensor field on \mathcal{M} which defines a non-degenerate bilinear form of index 1 on each tangent space $T_{z} \mathcal{M}, z \in \mathcal{M}$.

Let us recall that the geodesics in \mathcal{M} are smooth curves $z:[a, b] \rightarrow \mathcal{M}$ such that

$$
D_{s} \dot{z}(s)=0 \quad \text { for all } s \in[a, b]
$$

where D_{s} denotes the covariant derivative along z induced by the Levi-Civita connection of $\langle\cdot, \cdot\rangle_{z}$.

It is easy to prove that for each geodesic $z=z(s)$ the energy

$$
E(z)=\langle\dot{z}(s), \dot{z}(s)\rangle_{z}
$$

[^0]is constant in $[a, b]$, so a geodesic $z=z(s)$ is timelike, lightlike or spacelike if $E(z)$ is negative, null or positive, respectively.

A Lorentz manifold $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{z}\right)$ is called stationary if there exists a finite-dimensional Riemannian manifold $\left(\mathcal{M}_{0},\langle\cdot, \cdot\rangle_{x}\right)$ such that $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ and $\langle\cdot, \cdot\rangle_{z}$ is given by

$$
\begin{equation*}
\langle\zeta, \zeta\rangle_{z}=\langle\xi, \xi\rangle_{x}+2(\delta(x), \xi\rangle_{x} \tau-\beta(x) \tau^{2} \tag{1.1}
\end{equation*}
$$

for any $z=(x, t) \in \mathcal{M}_{0} \times \mathbb{R}$ and $\zeta=(\xi, \tau) \in T_{z} \mathcal{M} \equiv T_{x} \mathcal{M}_{0} \times \mathbb{R}$, with $\beta: \mathcal{M}_{0} \rightarrow \mathbb{R}$ smooth and positive scalar field, $\delta: \mathcal{M}_{0} \rightarrow T \mathcal{M}_{0}$ smonth vector field. In particular, if $\delta(x) \equiv 0,(1.1)$ defines a static metric and $\left(\mathcal{M},(\cdot, \cdot)_{z}\right)$ is called static Lorentzian manifold.

From now on, let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ be a stationary Lorentz manifold equipped with the Lorentz metric (1.1). Let P_{0} and P_{1} be two given submanifolds of \mathcal{M}_{0} and let $t_{0} \in \mathbb{R}$ be fixed.

The aim of this paper is to study the existence of lightlike geodesics $z:[0,1] \rightarrow \mathcal{M}$, $z=(x, t)$, joining $\tilde{P}_{0}=P_{0} \times\left\{t_{0}\right\}$ and $\tilde{P}_{1}=P_{1} \times \mathbb{R}$, that is such that $z(0) \in \tilde{P}_{0}$ and $z(1) \in \tilde{P}_{1}$, and whose space component x satisfies the orthogonal conditions.

$$
\begin{cases}\langle\dot{x}(0), \xi\rangle_{x}=0 & \text { for all } \xi \in T_{x(0)} P_{0} \tag{1.2}\\ \langle\dot{x}(1), \xi\rangle_{x}=0 & \text { for all } \xi \in T_{x(1)} P_{1}\end{cases}
$$

More exactly we want to find smooth functions $z:[0,1] \rightarrow \mathcal{M}, z(s)=(x(s), t(s))$, solutions of the following system:

$$
\begin{cases}D_{s} \dot{z}(s)=0 & \text { for all } s \in[0,1] \tag{1.3}\\ E(z)=\langle\dot{z}(s), \dot{z}(s)\rangle_{z}=0 & \text { for all } s \in[0,1], \\ x(0) \in P_{0}, \quad t(0)=t_{0}, & x(1) \in P_{1}, \\ \langle\dot{x}(0), \xi\rangle_{x}=0 & \text { for all } \xi \in T_{x(0)} P_{0} \\ \langle\dot{x}(1), \xi\rangle_{x}=0 & \text { for all } \xi \in T_{x(1)} P_{1}\end{cases}
$$

From a physical point of view, a Lorentz metric describes a gravitational field and lightlike geodesics verifying (1.3) represent trajectories of light rays joining two celestial bodies of which one is a light source. In General Relativity a remarkable example of stationary Lorentz manifold is the Kerr space-time which describes the space-time outside an axially symmetric body rotating around its axis while an example of static manifold is the Schwarzschild space-time which represents the manifold outside a static spherically symmetric massive body (cf. [6,9]).

Lightlike geodesics joining an event $\tilde{P}_{0}=\left\{\left(x_{0}, t_{0}\right)\right\}$ to a vertical line $\tilde{P}_{1}=\left\{x_{1}\right\} \times \mathbb{R}$ have been studied in [5], while in [12] the existence of geodesics, not necessarily lightlike, from a point to a subspace $\tilde{P}_{1}=P_{1} \times\left\{t_{1}\right\}$ in a static Lorentzian manifold has been proved. Here we prove that, in a stationary manifold \mathcal{M}, the number of light rays joining $\tilde{P}_{0}=$ $P_{0} \times\left\{t_{0}\right\}$ and $\tilde{P}_{1}=P_{1} \times \mathbb{R}$ depends on the topological properties of \mathcal{M}_{0}, P_{0} and P_{1} (for the Riemannian case, see $[8,13]$). To this aim in Section 3 we find out a lower bound to the Ljusternik-Schnirelman category of the space of paths joining P_{0} to P_{1} in \mathcal{M}_{0} by means of the category of $P_{0} \times P_{1}$.

In the following, the Ljusternik-Schnirelman category of the topological space X in itself will be denoted by cat (X) (see Definition 3.1).

Theorem 1.1. Let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ he a manifold equipped with the stationary Lorentz metric (1.1) such that
$\left(\mathrm{M}_{0}\right)\left(\mathcal{M}_{0},\langle\cdot, \cdot\rangle_{x}\right)$ is a connected, complete, C^{3} n-dimensional Riemannian manifold;
$\left(\mathrm{M}_{1}\right)$ there exist some constants $v, N, D>0$ such that

$$
\begin{equation*}
v \leq \beta(x) \leq N \quad \text { and } \quad\langle\delta(x), \delta(x)\rangle_{x} \leq D \quad \text { for all } x \in \mathcal{M}_{0} . \tag{1.4}
\end{equation*}
$$

Let P_{0} and P_{1} be two disjoint closed submanifolds of \mathcal{M}_{0} such that
(C) P_{0} or P_{1} is compact;
$\left(\mathrm{O}_{0}\right) \quad\langle\delta(x), \xi\rangle_{x}=0$ for any $x \in P_{0}, \xi \in T_{x} P_{0} ;$
$\left(\mathrm{O}_{1}\right) \quad\langle\delta(x), \xi\rangle_{x}=0$ for any $x \in P_{1}, \xi \in T_{x} P_{1}$.
Then there exists at least one solution of (1.3). If, moreover, P_{0} and P_{1} are both contractible in \mathcal{M}_{0}, then problem (1.3) has at least $\operatorname{cat}\left(P_{0} \times P_{1}\right)$ solutions.

The following multiplicity theorem holds even if, eventually, P_{0} and P_{1} are not disjoint:
Theorem 1.2. Let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ be a manifold equipped with the Lorentz metric (1.1) such that hypotheses $\left(\mathrm{M}_{0}\right)$ and $\left(\mathrm{M}_{1}\right)$ are satisfied. Let P_{0} and P_{1} be two closed submanifolds of \mathcal{M}_{0} such that $(\mathrm{C}),\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$ hold. If \mathcal{M}_{0} is not contractible in itself while P_{0} and P_{1} are both contractible in \mathcal{M}_{0}, then problem (1.3) has infinitely many non-constant solutions $z_{n}(s)=\left(x_{n}(s), t_{n}(s)\right)$ whose "arrival times" $\left(t_{n}(1)\right)_{n \in \mathbb{N}}$ form a diverging increasing sequence.

Remark 1.3. Let $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{z}\right)$ be a conformal stationary Lorentz manifold, that is there exists a finite-dimensional Riemannian manifold $\left(\mathcal{M}_{0},\langle\cdot, \cdot\rangle_{x}\right)$ such that $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ is equipped with the Lorentz metric

$$
\langle\zeta, \zeta\rangle_{z}=\alpha(x, t)\left[\langle\xi, \xi\rangle_{x}+2\langle\delta(x), \xi\rangle_{x} \tau-\beta(x) \tau^{2}\right]
$$

for any $z=(x, t) \in \mathcal{M}_{0} \times \mathbb{R}$ and for any $\zeta=(\xi, \tau) \in T_{z} \mathcal{M} \equiv T_{x} \mathcal{M}_{0} \times \mathbb{R}$, where $\alpha: \mathcal{M} \rightarrow$ \mathbb{R} and $\beta: \mathcal{M}_{0} \rightarrow \mathbb{R}$ are smooth and positive scalar fields and $\delta: \mathcal{M}_{0} \rightarrow T \mathcal{M}_{0}$ is a smooth vector field. Observe that β may not satisfy (1.4). Let P_{0}, P_{1} be two submanifolds of \mathcal{M}_{0} and let $t_{0} \in \mathbb{R}$ be fixed. Since lightlike geodesics are independent, up to reparametrization, on a conformal change of the metric, the same results of Theorems 1.1 and 1.2 still hold for such a kind of Lorentz manifolds provided that in the hypotheses of such theorems we replace the Riemannian metric $\langle\cdot, \cdot\rangle_{x}$ on $T_{x} \mathcal{M}_{0}$ with the new one

$$
\langle\cdot, \cdot\rangle_{R}=\frac{\langle\cdot, \cdot\rangle_{x}}{\beta(x)} \quad \text { for each } x \in \mathcal{M}_{0}
$$

Remark 1.4. Clearly, Theorems 1.1 and 1.2 can be proved if $\delta(x) \equiv 0$, that is if \mathcal{M} is a static Lorentz manifold. In this case, however, the proof can be given by a different and easier variational approach (see Section 5).

If P_{0} is reduced to a single point $x_{0} \in \mathcal{M}_{0}$ the existence and multiplicity results in [12] can be improved as follows.

Corollary 1.5. Let $\left(\mathcal{M},\langle\cdot, \cdot\rangle_{z}\right)$ be a stationary Lorentz manifold satisfying $\left(\mathrm{M}_{0}\right)$ and $\left(\mathrm{M}_{1}\right)$. Let $z_{0}=\left(x_{0}, t_{0}\right) \in \mathcal{M}$ be fixed and P_{1} be a closed submanifold of \mathcal{M}_{0} such that $\left(\mathrm{O}_{1}\right)$ holds. If $x_{0} \notin P_{1}$, there exists at least one lightlike geodesic starting from z_{0} and ending in $P_{1} \times \mathbb{R}$; moreover if P_{1} is contractible in \mathcal{M}_{0} such geodesics are at least cat $\left(P_{1}\right)$. At last, either if $x_{0} \in P_{1}$ or if $x_{0} \notin P_{1}$, if P_{1} is contractible in \mathcal{M}_{0} while \mathcal{M}_{0} is not contractible in itself, there exist infinitely many lightlike non-constant geodesics $z_{n}(s)=\left(x_{n}(s), t_{n}(s)\right)$ from z_{0} to $P_{1} \times \mathbb{R}$ whose "arrival times" $\left(t_{n}(1)\right)_{n \in \mathbb{N}}$ form a diverging increasing sequence.

Remark 1.6. By using the arguments in $[2,13]$ it is possible to extend Theorems 1.1 and 1.2 to the case in which the Lorentzian manifold has a light convex boundary or the submanifolds P_{0} and P_{1} are both non-compact. In particular, this generalization allows to prove the existence of light rays of type (1.3) in some non-complete space-times relevant from a physical point of view, for example the Kerr and the Schwarzschild ones.

2. Variational approach

Let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ be a manifold equipped with the stationary Lorentz metric (1.1) such that hypotheses $\left(\mathrm{M}_{0}\right)$ and $\left(\mathrm{M}_{1}\right)$ hold. Let $t_{0} \in \mathbb{R}$ be fixed and Γ_{0}, Γ_{1} be two given submanifolds of \mathcal{M}_{0}. Assume $t_{0}=0$ and let $\tilde{P}_{0}=P_{0} \times\{0\}, \tilde{P}_{1}=P_{1} \times \mathbb{R}$.

As lightlike geodesics are independent, up to reparametrization, on a conformal change of the metric and β is bounded and far from zero, then, without loss of generality, we can assume that it is $\beta(x) \equiv 1$; moreover by the Nash Embedding theorem it follows that \mathcal{M}_{0} is a submanifold of an Euclidean space \mathbb{R}^{N} and its metric $\langle\cdot, \cdot\rangle_{x}$ is the Euclidean metric of \mathbb{R}^{N} which will be denoted by $\langle\cdot, \cdot\rangle$, thus we can suppose that \mathcal{M} is equipped with the Lorentz metric

$$
\begin{equation*}
\langle\zeta, \zeta\rangle_{z}=\langle\xi, \xi\rangle+2\langle\delta(x), \xi\rangle \tau-\tau^{2} \tag{2.1}
\end{equation*}
$$

for any $z=(x, t) \in \mathcal{M}_{0} \times \mathbb{R}$ and $\zeta=(\xi, \tau) \in T_{z} \mathcal{M} \equiv T_{x} \mathcal{M}_{0} \times \mathbb{R}$.
Let $I=[0,1]$ and $H^{1}\left(I, \mathbb{R}^{N}\right)$ be the Sobolev space of the absolutely continuous curves whose derivative is square summable. It is well known that $H^{1}\left(I, \mathbb{R}^{N}\right)$ is a Hilbert space endowed by the norm

$$
\|x\|^{2}=\int_{0}^{1}\langle\dot{x}, \dot{x}\rangle \mathrm{d} s+\int_{0}^{1}\langle x, x\rangle \mathrm{d} s
$$

Let us define the subset

$$
\Gamma\left(P_{0}, P_{1}\right)=\left\{x \in H^{1}\left(I, \mathbb{R}^{N}\right): x(I) \subset \mathcal{M}_{0} ; x(0) \in P_{0}, x(1) \in P_{1}\right\}
$$

It is possible to prove (see, e.g., [10]) that if \mathcal{M}_{0} is complete and P_{0}, P_{1} are closed then $\Gamma\left(P_{0}, P_{1}\right)$ is a complete Riemannian manifold whose tangent space in $x \in \Gamma\left(P_{0}, P_{1}\right)$ is

$$
\left.\begin{array}{rl}
T_{x} \Gamma\left(P_{0}, P_{1}\right)=\left\{\xi \in H^{1}\left(I, T \mathcal{M}_{0}\right):\right. & \xi(s)
\end{array} \in T_{x(s)} \mathcal{M}_{0} \text { for all } s \in I ; ~ 子, ~ \xi(0) \in T_{x(0)} P_{0}, \xi(1) \in T_{x(1)} P_{1}\right\} .
$$

If $\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$ hold, then solutions of (1.3) can be found as critical points at level zero of the functional

$$
f(z)=\frac{1}{2} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{z} \mathrm{~d} s
$$

in $\Gamma\left(P_{0}, P_{1}\right) \times H^{1}(I, \mathbb{R})$. Unluckly if f is not bounded from above nor from below then, as in [5], it is better to define a new functional bounded from below by introducing a new parameter, the "arrival time" $\lambda \in \mathbb{R}$, and a variational argument similar to the Fermat principle.

Fixed $\lambda \in \mathbb{R}$, let us introduce

$$
W_{\lambda}=\left\{t \in H^{1}(I, \mathbb{R}): t(0)=0, t(1)=\lambda\right\},
$$

closed affine submanifold of $H^{1}(I, \mathbb{R})$ whose tangent space in each point is given by

$$
H_{0}^{1}=\left\{\tau \in H^{1}(I, \mathbb{R}): \tau(0)=\tau(1)=0\right\},
$$

and let us define $Z_{\lambda}=\Gamma\left(P_{0}, P_{1}\right) \times W_{\lambda}$ Hilbert manifold such that $T_{z} Z_{\lambda} \equiv T_{\lambda} \Gamma\left(P_{0}, P_{1}\right) \times$ H_{0}^{1} for each $z=(x, t) \in Z_{\lambda}$.

Let us consider the "energy" functional restricted to Z_{λ}

$$
f_{\lambda}(z)=\frac{1}{2} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{z} \mathrm{~d} s=\frac{1}{2} \int_{0}^{1}\left(\langle\dot{x}, \dot{x}\rangle+2\langle\delta(x), \dot{x}\rangle i-i^{2}\right) \mathrm{d} s, \quad z=(x, t) \in Z_{\lambda}
$$

Remark 2.1. It is easy to prove that f_{λ} is a C^{1} functional on Z_{λ}; moreover if $z=(x, t) \in$ Z_{λ} and $\zeta=(\xi, \tau) \in T_{z} Z_{\lambda}$, by $\tau \in H_{0}^{1}$ and integrating by parts there results

$$
\begin{aligned}
f_{\lambda}^{\prime}(z)[\zeta]= & \int_{0}^{1}\langle\dot{z}, \dot{\zeta}\rangle_{z} \mathrm{~d} s=\langle\dot{z}(1), \zeta(1)\rangle_{z}-\langle\dot{z}(0), \zeta(0)\rangle_{z}-\int_{0}^{1}\left\langle D_{s} \dot{z}, \zeta\right\rangle_{z} \mathrm{~d} s \\
= & \int_{0}^{1}\left\langle-D_{s} \dot{x}+i \delta^{\prime}(x)^{*}[\dot{x}]-\frac{\mathrm{d}}{\mathrm{~d} s}(\dot{\delta} \delta(x)), \xi\right\rangle \mathrm{d} s+[\langle\dot{x}, \xi\rangle]_{0}^{1} \\
& +[\dot{t}\langle\delta(x), \xi\rangle]_{0}^{1}+\int_{0}^{1}\left(\ddot{t}-\frac{\mathrm{d}}{\mathrm{~d} s}(\langle\delta(x), \dot{x}\rangle)\right) \tau \mathrm{d} s
\end{aligned}
$$

where $\delta^{\prime}(x(s))^{*}$ is the adjoint of $\delta^{\prime}(x(s))$ for any $s \in I$. Clearly,

$$
\begin{align*}
\frac{\partial f_{\lambda}}{\partial x}(z)[\xi]= & f_{\lambda}^{\prime}(z)[(\xi, 0)] \\
= & \int_{0}^{1} \\
& \left(-D_{s} \dot{x}+i \delta^{\prime}(x)^{*}[\dot{x}]-\frac{\mathrm{d}}{\mathrm{~d} s}(i \delta(x)), \xi\right\rangle \mathrm{d} s \tag{2.2}\\
& +[\langle\dot{x}, \xi\rangle]_{0}^{1}+[\dot{t}(\delta(x), \xi\rangle]_{0}^{1}
\end{align*}
$$

for all $\xi \in T_{x} \Gamma\left(P_{0}, P_{1}\right)$, while

$$
\begin{equation*}
\frac{\partial f_{\lambda}}{\partial t}(z)[\tau]=f_{\lambda}^{\prime}(z)[(0, \tau)]=\int_{0}^{1}\left(\ddot{t}-\frac{\mathrm{d}}{\mathrm{~d} s}((\delta(x), \dot{x}))\right) \tau \mathrm{d} s \tag{2.3}
\end{equation*}
$$

for all $\tau \in H_{0}^{1}$.
Theorem 2.2. Let $z: s \in I \longmapsto z(s)=(x(s), t(s)) \in \mathcal{M}$. If P_{0} and P_{1} satisfy the orthogonal hypotheses $\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$, then the following propositions are equivalent:
(a) z is a solution of (1.3) with "arrival time" $t(1)=\lambda$;
(b) z is a critical point of f_{λ} on Z_{λ} such that $f_{\lambda}(z)=0$.

Proof. Remark that conditions $\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$ imply

$$
\begin{equation*}
\langle\delta(x(0)), \xi(0)\rangle=\langle\delta(x(1)), \xi(1)\rangle=0 \quad \text { for all } \xi \in T_{x} \Gamma\left(P_{0}, P_{1}\right) \tag{2.4}
\end{equation*}
$$

If (a) holds, then (b) follows easily by Remark 2.1, (2.4) and the orthogonal conditions (1.2).

Let z be such that $f_{\lambda}^{\prime}(z)=0$. By (2.3) it follows

$$
\begin{equation*}
\ddot{i}-\frac{\mathrm{d}}{\mathrm{~d} s}(\langle\delta(x), \dot{x}\rangle)=0 ; \tag{2.5}
\end{equation*}
$$

moreover by (2.2) for any $\xi \in T_{x} \Gamma\left(P_{0}, P_{1}\right)$ with compact support it is

$$
\int_{0}^{1}\left\langle-D_{s} \dot{x}+i \delta^{\prime}(x)^{*}[\dot{x}]-\frac{\mathrm{d}}{\mathrm{~d} s}(i \delta(x)), \xi\right\rangle \mathrm{d} s=0
$$

By using classical theorems it can be proved that

$$
-D_{s} \dot{x}+\dot{t} \delta^{\prime}(x)^{*}[\dot{x}]-\frac{\mathrm{d}}{\mathrm{~d} s}(\dot{\delta} \delta(x))=0
$$

then (2.4) implies that z is a geodesic and the orthogonal conditions (1.2) hold, while $f_{\lambda}(z)=0$ implies that z is lightlike.

From now on, let P_{0} and P_{1} satisfy the orthogonal hypotheses $\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$.
Let us consider the kernel of the map $\partial f_{\lambda} / \partial t$:

$$
N_{\lambda}=\left\{z \in Z_{\lambda}: \frac{\partial f_{\lambda}}{\partial t}(z) \equiv 0\right\} .
$$

Proposition 2.3. Let $z=(x, t) \in Z_{\lambda}$ be given. Then the following propositions are equivalent:
(a) z is a critical point of f_{λ};
(b) $z \in N_{\lambda}$ and

$$
\frac{\partial f_{\lambda}}{\partial x}(z)[\xi]=0 \quad \text { forall } \xi \in T_{x} \Gamma\left(P_{0}, P_{1}\right)
$$

Proof. Follows easily by Remark 2.1.
Remark 2.4. Let $z=(x, t) \in Z_{\lambda}$. By (2.5) it follows that $z \in N_{\lambda}$ if and only if

$$
t(s)=\int_{0}^{s}\langle\delta(x(r)), \dot{x}(r)\rangle \mathrm{d} r+s\left(\lambda-\int_{0}^{1}\langle\delta(x), \dot{x}\rangle \mathrm{d} r\right) \quad \text { for all } s \in I
$$

Let us define

$$
\Phi_{\lambda}: x \in \Gamma\left(P_{0}, P_{1}\right) \longmapsto \Phi_{\lambda}(x) \in W_{\lambda}
$$

such that

$$
\Phi_{\lambda}(x)(s)=\int_{0}^{s}\langle\delta(x(r)), \dot{x}(r)\rangle \mathrm{d} r+s\left(\lambda-\int_{0}^{1}\langle\delta(x), \dot{x}\rangle \mathrm{d} r\right) \text { for all } s \in I .
$$

By Remark 2.4 it is easy to prove that Φ_{λ} is a C^{1} function whose graph is just N_{λ}, that is

$$
\begin{equation*}
z=(x, t) \in N_{\lambda} \quad \Longleftrightarrow \quad t=\Phi_{\lambda}(x) . \tag{2.6}
\end{equation*}
$$

By (2.6) it follows that the restriction of f_{λ} on N_{λ} is the functional

$$
J_{\lambda}: x \in \Gamma\left(P_{0}, P_{1}\right) \longmapsto J_{\lambda}(x)=f_{\lambda}\left(x, \Phi_{\lambda}(x)\right) \in \mathbb{R},
$$

hence for each $x \in \Gamma\left(P_{0}, P_{1}\right)$:

$$
\begin{equation*}
J_{\lambda}(x)=\frac{1}{2} \int_{0}^{1}\left(\langle\dot{x}, \dot{x}\rangle+\langle\delta(x), \dot{x}\rangle^{2}\right) \mathrm{d} s-\left(\lambda-\int_{0}^{1}\langle\delta(x), \dot{x}\rangle \mathrm{d} s\right)^{2} . \tag{2.7}
\end{equation*}
$$

Let us remark that

$$
\begin{equation*}
J_{\lambda}^{\prime}(x)[\xi]=\frac{\partial f_{\lambda}}{\partial x}\left(x, \Phi_{\lambda}(x)\right)[\xi]+\frac{\partial f_{\lambda}}{\partial t}\left(x, \Phi_{\lambda}(x)\right)\left[\Phi_{\lambda}^{\prime}(x)[\xi]\right] \tag{2.8}
\end{equation*}
$$

for any $x \in \Gamma\left(P_{0}, P_{1}\right), \xi \in T_{x} \Gamma\left(P_{0}, P_{1}\right)$.
Arguing as in [7], Proposition 2.3, (2.6) and (2.8) imply the following result:
Proposition 2.5. Taken $z=(x, t) \in Z_{\lambda}$, the following propositions are equivalent:
(a) z is a critical point of f_{λ};
(b) x is a critical point of J_{λ} and $t=\Phi_{\lambda}(x)$.

Moreover, if (a) or (b) holds, it is $f_{\lambda}(x, t)=J_{\lambda}(x)$.

If $\lambda \in \mathbb{R}$ is fixed, by Theorem 2.2 and Proposition 2.5 it follows that, for obtaining solutions of problem (1.3) such that $t(1)=\lambda$, it is enough to find critical points of J_{λ} such that $J_{\lambda}(x)=0$. Unluckly here λ is unknown and, as it gives the "instant" in which the lightlike geodesic z "arrives" to the given manifold \tilde{P}_{1}, we can suppose that the parameter λ has to be strictly positive.

Let us introduce the map

$$
H:(\lambda, x) \in \mathbb{R}_{+} \times \Gamma\left(P_{0}, P_{1}\right) \longmapsto 2 J_{\lambda}(x) \in \mathbb{R} .
$$

Remark 2.6. By properties of J_{λ} and by last remarks it follows that H is a C^{1} functional and solving (1.3) is equivalent to find $(\lambda, x) \in \mathbb{R}_{+} \times \Gamma\left(P_{0}, P_{1}\right)$ solution of the following problem:

$$
\begin{equation*}
\frac{\partial H}{\partial x}(\lambda, x)=0, \quad H(\lambda, x)=0, \quad \lambda>0 . \tag{2.9}
\end{equation*}
$$

Remark 2.7. By (2.7) it is easy to prove that if (λ, x) is such that $H(\lambda, x)=0$, then

$$
\frac{\partial H}{\partial \lambda}(\lambda, x)=-2\left(\lambda-\int_{0}^{1}(\delta(x), \dot{x}\rangle \mathrm{d} s\right)=0 \quad \Longrightarrow \quad x \text { is constant. }
$$

Let $F: \Gamma\left(P_{0}, P_{1}\right) \rightarrow \mathbb{R}$ be defined as follows:

$$
\begin{equation*}
F(x)=\int_{0}^{1}\langle\delta(x), \dot{x}\rangle \mathrm{d} s+\sqrt{\int_{0}^{1}\left(\langle\dot{x}, \dot{x}\rangle+\langle\delta(x), \dot{x}\rangle^{2}\right) \mathrm{d} s} \tag{2.10}
\end{equation*}
$$

Remark 2.8. As Hölder older inequality implies

$$
\begin{equation*}
\left(\int_{0}^{1}\langle\delta(x), \dot{x}\rangle \mathrm{d} s\right)^{2} \leq \int_{0}^{1}\langle\delta(x), \dot{x}\rangle^{2} \mathrm{~d} s \tag{2.11}
\end{equation*}
$$

by (1.4) and (2.10) arguing as in [2, Lemma 3.2], it is possibie to prove that there exists $c_{0}>0$ such that

$$
\begin{equation*}
F(x) \geq c_{0}\left(\int_{0}^{1}\langle\dot{x}, \dot{x}\rangle \mathrm{d} s\right)^{\frac{1}{2}} \quad \text { for all } x \in \Gamma\left(P_{0}, P_{1}\right) \tag{2.12}
\end{equation*}
$$

Whence $F(x) \geq 0$ for each $x \in \Gamma\left(P_{0}, P_{1}\right)$ while $F(x)=0$ if and only if x is a constant function.

By simple calculations it is possible to prove that F is a map continuous but not differentiable at level zero and it is smooth elsewhere.

Remark 2.9. By Remarks 2.7, 2.8 and (2.10) it can be proved (see, e.g. [2] or [5]) that ($\bar{\lambda}, \bar{x}$) solves (2.9) with \bar{x} non-constant if and only if \bar{x} is such that

$$
F^{\prime}(\bar{x})=0, \quad \bar{\lambda}=F(\bar{x})>0
$$

Remark 2.10. If the given closed submanifolds P_{0} and P_{1} are disjoint, then there are no constants in $\Gamma\left(P_{0}, P_{1}\right)$; hence F is a C^{1} strictly positive functional in $\Gamma\left(P_{0}, P_{1}\right)$ and by Remark 2.9 it follows that for solving (2.9) it is enough to find critical points of F.

Finally, by Remarks 2.6 and 2.9 it follows:
Theorem 2.11. Let P_{0} and P_{1} be two given submanifolds of \mathcal{M}_{0} which satisfy the orthogonal conditions $\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$. If $\bar{x} \in \Gamma\left(P_{0}, P_{1}\right)$ is such that

$$
F^{\prime}(\bar{x})=0, \quad F(\bar{x})>0
$$

then, assuming $\bar{\lambda}=F(\bar{x}), \bar{z}=\left(\bar{x}, \Phi_{\bar{\lambda}}(\bar{x})\right)$ is a solution of prohlem (1.3).

3. Topological tools

In the last paragraph it has been proved that solving the given problem is equivalent to find positive critical levels of the functional F defined in (2.10). To this aim we will use the well known Ljusternik-Schnirelman Theory (see, e.g. [11,14,15]).

Definition 3.1. Let X be a topological space. Given $A \subseteq X$, $\operatorname{cat}_{X}(A)$ is the category of A in X, that is the least number of closed and contractible subsets of X covering A. If it is not possible to cover A with a finite number of such sets, it is cat ${ }_{X}(A)=+\infty$.

We denote $\operatorname{cat}(X)=\operatorname{cat}_{X}(X)$.
Definition 3.2. Let Γ be a Riemannian manifold. A C^{1} functional $g: \Gamma \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition at level $a \in \mathbb{R}$, briefly (PS) $)_{a}$, if any $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Gamma$ such that $g\left(x_{n}\right) \rightarrow a$ and $g^{\prime}\left(x_{n}\right) \rightarrow 0$ for $n \rightarrow+\infty$ has a subsequence which converges in Γ.

Let us recall the classical Ljusternik-Schnirelman multiplicity theorem.
Theorem 3.3. Let Γ be a complete Riemannian manifold and g a C^{1} functional on Γ which satisfies the $(P S)_{a}$ condition at any level $a \in \mathbb{R}$. Taking any $k \in \mathbb{N}, k>0$. let us define

$$
\begin{equation*}
\Gamma_{k}=\left\{A \subseteq \Gamma: \operatorname{cat}_{\Gamma}(A) \geq k\right\}, \quad c_{k}=\inf _{A \in \Gamma_{k}} \sup _{x \in A} g(x) \tag{3.1}
\end{equation*}
$$

Then c_{k} is a critical value of g for each k such that $\Gamma_{k} \neq \emptyset$ and $c_{k} \in \mathbb{R}$; if, moreover, g is bounded from below then g attains its infimum and has at least $\operatorname{cat}(\Gamma)$ critical levels.

Remark 3.4. Let Γ and g be as in Theorem 3.3. If g is bounded from below then for all $c \in \mathbb{R}$ it is

$$
\operatorname{cat}_{\Gamma}\left(g^{c}\right)<+\infty
$$

where $g^{c}=\{x \in \Gamma: g(x) \leq c\}$ is the sublevel of g corresponding to the level c.

Remark 3.5. If g is a positive functional not differentiable at level zero while it is smooth elsewhere in a complete Riemannian manifold and the (PS) ${ }_{a}$ condition holds at any level $a>0$, then it can be proved that the same result of Theorem 3.3 holds for $c_{k}>0$.

As Theorem 3.3 joins critical levels of a functional g to the topology of Γ, let us give some theorems useful to know more about the topological properties of the manifold $\Gamma\left(P_{0}, P_{1}\right)$ introduced in the previous section.

Theorem 3.6. Let $\left(\mathcal{M}_{0},(\cdot, \cdot)\right)$ be a smooth complete connected finite-dimensional Riemannian manifold and P_{0} and P_{1} be closed submanifolds. If \mathcal{M}_{0} is not contractible in itself while both P_{0} and P_{1} are contractible in \mathcal{M}_{0}, then $\Gamma\left(P_{0}, P_{1}\right)$ has infinite category and possesses compact subsets of arbitrary high category.

Proof. For the proof, see [3,4].

Theorem 3.7. Let $\left(\mathcal{M}_{0},\langle\cdot\rangle,\right)$ be a smooth complete connected finite-dimensional Riemannian manifold and P_{0} and P_{1} be closed submanifolds both contractible in \mathcal{M}_{0}. Then

$$
\operatorname{cat}\left(\Gamma\left(P_{0}, P_{1}\right)\right) \geq \operatorname{cat}\left(P_{0} \times P_{1}\right)
$$

Proof. If $\mathcal{P}\left(P_{0}, P_{1}\right)$ denotes the space of paths in \mathcal{M}_{0} which start from P_{0} and end in P_{1}, by $\operatorname{cat}\left(\mathcal{P}\left(P_{0}, P_{1}\right)\right)=\operatorname{cat}\left(\Gamma\left(P_{0}, P_{1}\right)\right)$ (e.g., see [4]) it is enough to prove that

$$
\begin{equation*}
\operatorname{cat}\left(\mathcal{P}\left(P_{0}, P_{1}\right)\right) \geq \operatorname{cat}\left(P_{0} \times P_{1}\right) \tag{3.2}
\end{equation*}
$$

Let $m=\operatorname{cat}\left(\mathcal{P}\left(P_{0}, P_{1}\right)\right)$ and $A_{1}, A_{2}, \ldots, A_{m}$ be closed and contractible sets in $\mathcal{P}\left(P_{0}, P_{1}\right)$ such that $\mathcal{P}\left(P_{0}, P_{1}\right)=A_{1} \cup A_{2} \cup \cdots \cup A_{m}$.

For any $j \in\{1,2, \ldots, m\}$, define

$$
B_{j}=\left\{\left(q_{0}, q_{1}\right) \in P_{0} \times P_{1}: \text { there exists } x \in A_{j} \text { such that } x(0)=q_{0}, x(1)=q_{1}\right\}
$$

By Definition 3.1 it follows that (3.2) holds if

$$
\begin{equation*}
P_{0} \times P_{1}=\bigcup_{j=1}^{m} B_{j} \tag{3.3}
\end{equation*}
$$

and B_{j} is closed and contractible in $P_{0} \times P_{1}$ for each $j \in\{1,2, \ldots, m\}$.
Remark that as P_{0} and P_{1} are contractible in \mathcal{M}_{0}, then there exist $\bar{q}_{0}, \bar{q}_{1} \in \mathcal{M}_{0}$ and two continuous maps $H_{0}: I \times P_{0} \rightarrow \mathcal{M}_{0}, H_{1}: I \times P_{1} \rightarrow \mathcal{M}_{0}$ such that

$$
\begin{array}{lll}
H_{0}\left(0, q_{0}\right)=q_{0}, & H_{0}\left(1, q_{0}\right)=\bar{q}_{0} & \text { for all } q_{0} \in P_{0} \\
H_{1}\left(0, q_{1}\right)=q_{1}, & H_{1}\left(1, q_{1}\right)=\bar{q}_{1} & \text { for all } q_{1} \in P_{1} \tag{3.5}
\end{array}
$$

moreover \mathcal{M}_{0} connected implies that there exists a path $\alpha: I \rightarrow \mathcal{M}_{0}$ such that

$$
\begin{equation*}
\alpha(0)=\bar{q}_{0}, \quad \alpha(1)=\bar{q}_{1} . \tag{3.6}
\end{equation*}
$$

Let $\left(q_{0}, q_{1}\right) \in P_{0} \times P_{1}$ be fixed and assume $\omega_{q_{0}, q_{1}}: I \rightarrow \mathcal{M}_{0}$ as follows:

$$
\omega_{q_{0}, q_{1}}(s)= \begin{cases}H_{0}\left(3 s, q_{0}\right) & \text { if } s \in\left[0, \frac{1}{3}[\right. \tag{3.7}\\ \alpha(3 s-1) & \text { if } s \in\left[\frac{1}{3}, \frac{2}{3}\right] \\ H_{1}\left(3-3 s, q_{1}\right) & \text { if } \left.s \in] \frac{2}{3}, 1\right] .\end{cases}
$$

By (3.4), (3.5) and (3.6) it follows that

$$
\begin{equation*}
\omega_{q_{0}, q_{1}} \in \mathcal{P}\left(P_{0}, P_{1}\right), \quad \omega_{q_{0}, q_{1}}(0)=q_{0}, \quad \omega_{q_{0}, q_{1}}(1)=q_{1} \tag{3.8}
\end{equation*}
$$

thus there exists $j \in\{1,2, \ldots, m\}$ such that $\omega_{q_{0}, q_{1}} \in A_{j}$, hence $\left(q_{0}, q_{1}\right) \in B_{j}$ and (3.3) holds.

Now, let $j \in\{1,2, \ldots, m\}$ be fixed. We claim that B_{j} is closed and contractible in $P_{0} \times P_{1}$.

In fact, let $\left(q_{0 n}, q_{1 n}\right) \in B_{j}$ be a given sequence such that $\left(q_{0 n}, q_{1 n}\right) \rightarrow\left(q_{0}, q_{1}\right)$ in $\mathcal{M}_{0} \times \mathcal{M}_{0}$ if $n \rightarrow+\infty$. By P_{0} and P_{1} closed, it is $\left(q_{0}, q_{1}\right) \in P_{0} \times P_{1}$ and, defined $\omega_{q_{0 n}, q_{1 n}}$ and $\omega_{q_{0, q_{1}}}$ as in (3.7), it is easy to prove that $\omega_{q_{0 n} . q_{1 n}} \rightarrow \omega_{q_{0, q_{1}}}$ uniformly in $\mathcal{P}\left(P_{0}, P_{1}\right)$. As $\omega_{q_{1 m}, q_{1 n}} \in A_{j}$ and A_{j} is closed, then $\omega_{q_{0}, q_{1}} \in A_{j}$ whence by (3.8) it follows $\left(q_{0}, q_{1}\right) \in B_{j}$.

As A_{j} is contractible in $\mathcal{P}\left(P_{0}, P_{1}\right)$, there exist $\bar{x}_{j} \in \mathcal{P}\left(P_{0}, P_{1}\right)$ and a continuous map $\mathcal{H}_{j}: I \times A_{j} \rightarrow \mathcal{P}\left(P_{0}, P_{1}\right)$ such that

$$
\begin{equation*}
\mathcal{H}_{j}(0, x)=x, \quad \mathcal{H}_{j}(1, x)=\bar{x}_{j} \quad \text { for all } x \in A_{j} \tag{3.9}
\end{equation*}
$$

For $s \in I$ and $\left(q_{0}, q_{1}\right) \in B_{j}$, assume

$$
\tilde{\mathcal{H}}_{j}\left(s,\left(q_{0}, q_{1}\right)\right)=\left(\mathcal{H}_{j}\left(s, \omega_{q_{0}, q_{1}}\right)(0), \mathcal{H}_{j}\left(s, \omega_{q_{0}, q_{j}}\right)(1)\right)
$$

with $\omega_{q_{0}, q_{1}}$ defined in (3.7). It is easy to prove that $\tilde{\mathcal{H}}_{j}: I \times B_{j} \rightarrow P_{0} \times P_{1}$ is continuous, moreover (3.8) and (3.9) imply that

$$
\begin{aligned}
\tilde{\mathcal{H}}_{j}\left(0,\left(q_{0}, q_{1}\right)\right) & =\left(\mathcal{H}_{j}\left(0, \omega_{q_{0}, q_{1}}\right)(0), \mathcal{H}_{j}\left(0, \omega_{q_{0}, q_{1}}\right)(1)\right) \\
& =\left(\omega_{q_{0}, q_{1}}(0), \omega_{q_{0}, q_{1}}(1)\right)=\left(q_{0}, q_{1}\right)
\end{aligned}
$$

while

$$
\tilde{\mathcal{H}}_{j}\left(1,\left(q_{0}, q_{1}\right)\right)=\left(\mathcal{H}_{j}\left(1, \omega_{q_{0}, q_{1}}\right)(0), \mathcal{H}_{j}\left(1, \omega_{q_{0}, q_{1}}\right)(1)\right)=\left(\bar{x}_{j}(0), \bar{x}_{j}(1)\right) .
$$

for all $\left(q_{0}, q_{1}\right) \in B_{j}$. Hence B_{j} is contractible to $\left(\bar{x}_{j}(0), \bar{x}_{j}(1)\right)$ in $P_{0} \times P_{1}$.

Remark 3.8. Theorem 3.7 generalizes a similar result proved in [12] when $P_{0}=\left\{x_{0}\right\}$.

4. Proof of main theorems

From now on, let $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ be a manifold equipped with the Lorentz metric (2.1) such that hypotheses $\left(\mathrm{M}_{0}\right)$ and $\left(\mathrm{M}_{1}\right)$ are satisfied. Moreover, let Γ_{0} and P_{1} be two given closed submanifolds of \mathcal{M}_{0} such that (C$),\left(\mathrm{O}_{0}\right)$ and $\left(\mathrm{O}_{1}\right)$ hold.

In order to find positive critical levels of the functional F introduced in (2.10), we need the following lemma.

Lemma 4.1. The functional F satisfies the $(P S)_{a}$ condition at any strictly positive level a.
Proof. Let $a>0$ and $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Gamma\left(P_{0}, P_{1}\right)$ be a (PS) $)_{a}$ sequence for F, i.e.

$$
\begin{gather*}
\lim _{n \rightarrow+\infty} F\left(x_{n}\right)=a \tag{4.1}\\
\lim _{n \rightarrow+\infty} F^{\prime}\left(x_{n}\right)=0 . \tag{4.2}
\end{gather*}
$$

By (2.12) and (4.1) it follows that

$$
\begin{equation*}
\left(\int_{0}^{1}\left\langle\dot{x}_{n}, \dot{x}_{n}\right\rangle \mathrm{d} s\right)_{n \in \mathbb{N}} \quad \text { is bounded. } \tag{4.3}
\end{equation*}
$$

By the hypothesis (C) and (4.3) it is easy to prove that there exists $x_{0} \in \mathcal{M}_{0}$ such that

$$
\begin{equation*}
\sup \left\{d\left(x_{n}(s), x_{0}\right): s \in I, n \in \mathbb{N}\right\}<+\infty \tag{4.4}
\end{equation*}
$$

(where $d(\cdot, \cdot)$ is the distance in \mathcal{M}_{0}) and $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded in $H^{1}\left(I, \mathbb{R}^{N}\right)$, so there exists x such that $x_{n} \rightharpoonup x$ weakly in $H^{1}\left(I, \mathbb{R}^{N}\right)$ and uniformly in I, up to subsequences.

As \mathcal{M}_{0} is complete and P_{0}, P_{1} are closed, then $x \in \Gamma\left(P_{0}, P_{1}\right)$; moreover it is possible to prove (cf. [1, Lemma 2.1]) that there exist two bounded sequences $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ in $H^{1}\left(I, \mathbb{R}^{N}\right)$ such that

$$
\begin{align*}
& x_{n}-x=\xi_{n}+v_{n}, \quad \xi_{n} \in T_{x_{n}} \Gamma\left(P_{0}, P_{1}\right) \quad \text { for any } n \in \mathbb{N}, \tag{4.5}\\
& \xi_{n} \rightharpoonup 0 \text { weakly in } H^{1}\left(I, \mathbb{R}^{N}\right) \quad \text { and } \quad v_{n} \rightarrow 0 \text { strongly in } H^{1}\left(I, \mathbb{R}^{N}\right) . \tag{4.6}
\end{align*}
$$

By (4.2) and (4.6) it follows that

$$
\begin{aligned}
o(1)= & F^{\prime}\left(x_{n}\right)\left[\xi_{n}\right]=\int_{0}^{1}\left(\left\langle\delta^{\prime}\left(x_{n}\right) \xi_{n}, \dot{x}_{n}\right\rangle+\left\langle\delta\left(x_{n}\right), \dot{\xi}_{n}\right\rangle\right) \mathrm{d} s \\
& +\frac{\int_{0}^{1}\left(\left\langle\dot{x}_{n}, \dot{\xi}_{n}\right\rangle+\left\langle\delta\left(x_{n}\right), \dot{x}_{n}\right\rangle\left\langle\delta\left(x_{n}\right), \dot{\xi}_{n}\right\rangle+\left\langle\delta\left(x_{n}\right), \dot{x}_{n}\right\rangle\left\langle\delta^{\prime}\left(x_{n}\right) \xi_{n}, \dot{x}_{n}\right\rangle\right) \mathrm{d} s}{\sqrt{\int_{0}^{1}\left(\left\langle\dot{x}_{n}, \dot{x}_{n}\right\rangle+\left\langle\delta\left(x_{n}\right), \dot{x}_{n}\right\rangle^{2}\right) \mathrm{d} s}}
\end{aligned}
$$

By (4.4) and $x_{n} \rightarrow x$ uniformly in I it follows $\delta\left(x_{n}\right) \rightarrow \delta(x)$ uniformly in I, thus by (4.6) it is

$$
\begin{equation*}
\int_{0}^{1}\left\langle\delta\left(x_{n}\right), \dot{\xi}_{n}\right\rangle \mathrm{d} s=\int_{0}^{1}\left\langle\delta\left(x_{n}\right)-\delta(x), \dot{\xi}_{n}\right\rangle \mathrm{d} s+\int_{0}^{1}\left\langle\delta(x), \dot{\xi}_{n}\right\rangle \mathrm{d} s=\mathrm{o}(1) \tag{4.7}
\end{equation*}
$$

By simple calculations, (1.4) and (4.3) imply

$$
\left(\sqrt{\int_{0}^{1}\left(\left(\dot{x}_{n}, \dot{x}_{n}\right\rangle+\left\langle\delta\left(x_{n}\right), \dot{x}_{n}\right\rangle^{2}\right) \mathrm{d} s}\right)_{n \in \mathbb{N}} \quad \text { is bounded }
$$

then by (4.3), (4.4), (4.6) and (4.7) it follows

$$
\begin{equation*}
\int_{0}^{1}\left\langle\dot{x}_{n}, \dot{\xi}_{n}\right\rangle \mathrm{d} s+\int_{0}^{1}\left\langle\delta\left(x_{n}\right), \dot{x}_{n}\right\rangle\left\langle\delta\left(x_{n}\right), \dot{\xi}_{n}\right\rangle \mathrm{d} s=\mathrm{o}(1) . \tag{4.8}
\end{equation*}
$$

By means of (4.5)-(4.7), Eq. (4.8) becomes

$$
\int_{0}^{1}\left(\dot{\xi}_{n}, \dot{\xi}_{n}\right\rangle \mathrm{d} s+\int_{0}^{1}\left\langle\delta\left(x_{n}\right), \dot{\xi}_{n}\right\rangle^{2} \mathrm{~d} s=\mathrm{o}(1),
$$

thus $\int_{0}^{1}\left(\dot{\xi}_{n}, \dot{\xi}_{n}\right\rangle \mathrm{d} s=\mathrm{o}(1)$ implies $\xi_{n} \rightarrow 0$ strongly in $H^{1}\left(I, \mathbb{R}^{N}\right)$.
Remark 4.2. If $P_{0} \cap P_{1}=\emptyset$, then by Remark $2.10 F$ is C^{1} in all $\Gamma\left(P_{0}, P_{1}\right)$ and arguing as in Lemma 4.1 the $(\mathrm{PS})_{a}$ condition holds at any level $a \in \mathbb{R}$.

If $P_{0} \cap P_{1}$ is not empty, some constants are in $\Gamma\left(P_{0}, P_{1}\right)$ and F is not differentiable at level zero then the result in Remark 3.4 is not obvious. Nevertheless the following lemma can be proved:

Lemma 4.3. For any $c \in \mathbb{R}$ the sublevel F^{c} is such that

$$
\begin{equation*}
\operatorname{cat}_{\Gamma\left(P_{0}, P_{1}\right)}\left(F^{c}\right)<+\infty . \tag{4.9}
\end{equation*}
$$

Proof. If $P_{0} \cap P_{1}=\emptyset$, (4.9) follows by Remark 3.4. If, on the contrary, $P_{0} \cap P_{1} \neq \emptyset$, we consider the functional

$$
g(x)=\int_{0}^{1}\langle\dot{x}, \dot{x}\rangle \mathrm{d} s, \quad x \in \Gamma\left(P_{0}, P_{1}\right)
$$

It is well known that g is of class C^{1}; moreover, simplifying the arguments in Lemma 4.1, it can be proved that g satisfies (PS) $)_{a}$ for all $a \in \mathbb{R}$. By Remark 3.4 it follows

$$
\begin{equation*}
\operatorname{cat}_{\Gamma\left(P_{0}, P_{1}\right)}\left(g^{b}\right)<+\infty \quad \text { for any } b \in \mathbb{R} \tag{4.10}
\end{equation*}
$$

As (2.12) implies that fixed $c \in \mathbb{R}$ there exists $b \in \mathbb{R}$ such that

$$
F^{c} \subset g^{b}
$$

then (4.9) follows by (4.10).

Proof of Theorem 1.1. Let $P_{0} \cap P_{1}=\emptyset$. By (2.12), Remark 4.2 and Theorem 3.3 it follows that

$$
c=\inf _{x \in \Gamma\left(P_{0}, P_{1}\right)} F(x)>0
$$

is attained. If, moreover, P_{0} and P_{1} are contractible in \mathcal{M}_{0}, then by Theorems 3.3 and 3.7 the functional F has at least $\operatorname{cat}\left(P_{0} \times P_{1}\right)$ strictly positive critical levels. Hence Theorem 2.11 can be applied.

Proof of Theorem 1.2. Assume now that the hypotheses of Theorem 1.2 hold.
If $P_{0} \cap P_{1}=\emptyset$, then by (2.12), Remark 4.2 and Theorems 3.3 and 3.6 it follows that F has infinitely many strictly positive critical levels. However for finding an estimate of the "arrival times" it is better to use the following tools which work even if $P_{0} \cap P_{1} \neq \emptyset$.

Let $\varepsilon>0$ be fixed. We claim there exists $\bar{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
B \in \Gamma_{\bar{k}} \quad \Longrightarrow \quad B \cap F_{\varepsilon} \neq \emptyset, \tag{4.11}
\end{equation*}
$$

where $\Gamma_{\bar{k}}$ is defined in (3.1) and $F_{\varepsilon}=\left\{x \in \Gamma\left(P_{0}, P_{1}\right): F(x)>\varepsilon\right\}$.
In fact, if (4.11) does not hold there exists a sequence $\left(B_{n}\right)_{n \in \mathbb{N}}$ of subsets of $\Gamma\left(P_{0}, P_{1}\right)$ such that

$$
\operatorname{cat}_{\Gamma\left(P_{0}, \mu_{1}\right)}\left(B_{n}\right) \geq n, \quad B_{n} \subset F^{\varepsilon} \quad \text { for all } n \in \mathbb{N}
$$

thus cat ${ }_{\left(P_{0}, P_{1}\right)}\left(F^{\varepsilon}\right)=+\infty$ in contradiction with Lemma 4.3.
Let \bar{k} be such that (4.11) holds and consider the corresponding $c_{\bar{k}}$ defined as in (3.1). By (4.11) and Theorem 3.6 it follows that

$$
\Gamma_{\bar{k}} \neq \emptyset, \quad \varepsilon \leq c_{\bar{k}}<+\infty,
$$

hence by Remark 3.5 and Lemma $4.1 c_{\bar{k}}$ is a strictly positive critical level of F.
As $\varepsilon>0$ is fixed in an arbitrary way, it is possible to consider two sequences $\varepsilon_{n} \nearrow+\infty$ and $k_{n} \nearrow+\infty$ such that

$$
0<\varepsilon_{n} \leq c_{k_{n}}<\varepsilon_{n+1} \leq c_{k_{n+1}}
$$

and for each $n \in \mathbb{N}$ there exists $x_{n} \in \Gamma\left(P_{0}, P_{1}\right)$ critical point of F at level $c_{k_{n}}$. By Theorem 2.11 it follows that problem (1.3) has infinitely many solutions whose arrival time is $\lambda_{n}=$ $F\left(x_{n}\right)=c_{k_{n}}$ such that $\lim _{n \rightarrow+\infty} \lambda_{n}=+\infty$.

Remark 4.4. In the hypotheses of Theorem 1.2 it is easy to prove that the found sequence of solutions $z_{n}=\left(x_{n}, t_{n}\right)$ is such that

$$
\lim _{n \rightarrow+\infty} \int_{0}^{1}\left\langle\dot{x}_{n}, \dot{x}_{n}\right\rangle \mathrm{d} s=+\infty
$$

In fact, by means of simple calculations, (1.4) and (2.11) imply that there exists $\bar{c}_{0}>0$ such that

$$
F(x) \leq \bar{c}_{0}\left(\int_{0}^{1}\langle\dot{x}, \dot{x}\rangle \mathrm{d} s\right)^{1 / 2} \quad \text { for all } x \in \Gamma\left(P_{0}, P_{1}\right)
$$

5. Static case

Let $\left(\mathcal{M},(\cdot, \cdot)_{z}\right)$ be a static Lorentz manifold satisfying (M_{0}) and such that for some constants $N, v>0$ there results $v \leq \beta(x) \leq N$ for all $x \in \mathcal{M}_{0}$.

Arguing as in Section 2 we can suppose that $\mathcal{M}=\mathcal{M}_{0} \times \mathbb{R}$ is equipped with the static Lorentzian metric

$$
\begin{equation*}
\langle\zeta, \zeta\rangle_{z}=\langle\xi, \xi\rangle-\tau^{2} \tag{5.1}
\end{equation*}
$$

for any $z=(x, t) \in \mathcal{M}_{0} \times \mathbb{R}$ and $\zeta=(\xi, \tau) \in T_{z} \mathcal{M} \equiv T_{x} \mathcal{M}_{0} \times \mathbb{R}$, where $\langle\cdot, \cdot)$ is the Euclidean Riemannian metric on \mathcal{M}_{0}.

The following result holds:
Corollary 5.1. Let $\left(\mathcal{M},\langle\cdot \cdot \cdot\rangle_{z}\right)$ be a static Lorentz manifold satisfying $\left(\mathrm{M}_{0}\right)$ and such that for some constants $N, v>0$ there results $v \leq \beta(x) \leq N$ for all $x \in \mathcal{M}_{0}$. Let P_{0} and P_{1} be two closed submanifolds of \mathcal{M}_{0} such that (C) holds. If $P_{0} \cap P_{1}=\emptyset$, then there exists at least one solution of (1.3), while if P_{0} and P_{1} are both contractible in \mathcal{M}_{0} then the solutions of (1.3) are at least $\operatorname{cat}\left(P_{0} \times P_{1}\right)$. If either $P_{0} \cap P_{1}=\emptyset$ or $P_{0} \cap P_{1} \neq \emptyset$, and P_{0} and P_{1} are both contractible in \mathcal{M}_{0} while \mathcal{M}_{0} is not contractible in itself, then problem (1.3) has infinitely many non-constant solutions $z_{n}(s)=\left(x_{n}(s), t_{n}(s)\right)$ such that the "lenght" of x_{n} and the "arrival time" $t_{n}(1)$ are diverging increasing sequences.

Corollary 5.1 can be proved by means of Theorems 1.1 and 1.2 applied to a static Lorentz manifold, however we want to prove Corollary 5.1 by using a simpler variational approach.

Theorem 5.2. Let \mathcal{M} be a manifold endowed by the static Lorentz metric (5.1) and $z=$ (x, t) be a smooth curve. The following propositions are equivalent:
(a) $z=z(s)$ is a geodesic in \mathcal{M};
(b) $x=x(s)$ is a geodesic in $\left(\mathcal{M}_{0},\langle\cdot, \cdot\rangle\right)$ and there exists $k \in \mathbb{R}$ such that $t(s)=k s+t(0)$ for all $s \in I$.
Moreover, z is a lightlike geodesic in \mathcal{M} starting from $P_{0} \times\{0\}$ which arrives to $P_{1} \times \mathbb{R}$ if and only if (b) holds, x joins P_{0} and P_{1} and

$$
t(s)=L(x) s \quad \text { where } \quad L(x)=\int_{0}^{1} \sqrt{\langle\dot{x}, \dot{x}\rangle} \mathrm{d} s \quad \text { is the length of } x .
$$

Proof. By (5.1) it is

$$
\begin{equation*}
\left\langle D_{s} \dot{z}(s), \zeta\right\rangle_{z}=\left\langle D_{s} \dot{x}(s), \xi\right\rangle-\ddot{t}(s) \tau \tag{5.2}
\end{equation*}
$$

for all $s \in I, \zeta=(\xi, \tau) \in T_{z(s)} \mathcal{M}$. Whence (a) implies that x is a geodesic in \mathcal{M}_{0} and there exist two constants $E, \bar{E} \in \mathbb{R}$ such that

$$
\begin{equation*}
E=\langle\dot{z}(s), \dot{z}(s)\rangle_{z}, \quad \bar{E}=\langle\dot{x}(s), \dot{x}(s)\rangle \quad \text { for all } s \in I . \tag{5.3}
\end{equation*}
$$

By (5.1) and (5.3) it follows that there exists a real constant k such that $\dot{t}(s)=k$ for any $s \in I$, hence (b) holds.

Vice versa, if x is a geodesic in \mathcal{M}_{0} and t is a straight line, by (5.2) it follows that $D_{s} \dot{z}=0$.

Now, if z is a lightlike geodesic in \mathcal{M} from $P_{0} \times\{0\}$ to $P_{1} \times \mathbb{R}$, then x joins P_{0} and P_{1}, $t(0)=0$ and in (5.3) it is $E=0$, whence $\dot{t}(s)=\sqrt{\langle\dot{x}(s), \dot{x}(s)\rangle}$ which implies $t(s)=L(x) s$. The contrary follows easily by (5.1).

Proof of Corollary 5.1. By Theorem 5.2 it follows that searching solutions of (1.3) is equivalent to study critical points of the functional

$$
G(x)=\frac{1}{2} \int_{0}^{1}\langle\dot{x}, \dot{x}\rangle \mathrm{d} s, \quad x \in \Gamma\left(P_{0}, P_{1}\right) .
$$

As G is a C^{1} map on $\Gamma\left(P_{0}, P_{1}\right)$ and verifies (PS) ${ }_{a}$ condition for any $a \in \mathbb{R}$, the proof follows by Theorems 3.3, 3.6 and 3.7.

References

[1] V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math. 105 (1994) 1-25.
[2] A.M. Candela, Lightlike periodic trajectories in space-times, Ann. Mat. Pura Appl., to appear.
[3] A.M. Canino, On p-convex sets and geodesics, J. Differential Equations 75 (1988) 118-157.
[4] E. Fadell and S. Husseini, Category of loop spaces of open subsets in Euclidean space, Nonlinear Anal. 17 (1991) 1153-1161.
[5] D. Fortunato, F. Giannoni and A. Masiello, A Fermat principle for stationary space-times and applications to light rays, J. Geom. Phys. 15 (1995) 159-188.
[6] D. Fortunato and A. Masiello, Fermat principles in General Relativity and the existence of light rays on Lorentzian manifolds, in: Proc. Variational and Local Methods in the Study of Hamiltonian Systems ICTP 1994 eds., A. Ambrosetti and G.F. Dell'Antonio (World Scientific, Singapore, 1995) pp. 34-64.
[7] F. Giannoni and A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, J. Funct. Anal. 101 (1991) 340-369.
[8] K. Grove, Condition (C) for the energy integral on certain path spaces and applications to the theory of geodesics, J. Differential Geom. 8 (1973) 207-223.
[9] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, London, 1973).
[10] W. Klingenberg, Riemannian Geometry (de Gruyter, Berlin, 1982).
[11] A. Masiello, Variational Methods in Lorentzian Geometry (Pitman Res. Notes Math. Ser. 309, London, 1994).
[12] J. Molina, Alcune applicazioni della Teoria di Morse a varietà di Lorentz (Tesi di Dottorato, Pisa, 1996).
[13] A. Salvatore, Trajectories of dynamical systems joining two given submanifolds, Differential Integral Equations 9 (1996) 779-790.
[14] J.T. Schwartz, Nonlinear Functional Analysis (Notes on Mathamatics and Application (Gordon and Breach, New York, 1969).
[15] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (Springer, Berlin, 1990).

[^0]: * Supported by MURST (research funds 40% and 60%) and EEC, Program Human Capital Mobility (contract ERBCHRXCT 940494).
 * Corresponding author, E-mail candela@pascal.dm.uniba.it.

